

Interfaces in Java

An Interface is defined as an abstract type used to specify the behavior of a class.

An interface in Java is a blueprint of a class. A Java interface contains static

constants and abstract methods.

- The interface in Java is a mechanism to achieve abstraction.

- There can be only abstract methods in the Java interface, not the method

body.

- It is used to achieve abstraction and multiple inheritance in Java. In other

words, you can say that interfaces can have abstract methods and variables.

Java Interface also represents the IS-A relationship.

- Like a class, an interface can have methods and variables, but the methods

declared in an interface are by default abstract.

Notes:

- It cannot be instantiated just like the abstract class.

- Since Java 8, we can have default and static methods in an interface.

- Since Java 9, we can have private methods in an interface.

Why do we use an Interface?

- It is used to achieve total abstraction.

- Since java does not support multiple inheritance in the case of class, by

using an interface it can achieve multiple inheritance.

- Interfaces are used to implement abstraction. So the question arises why use

interfaces when we have abstract classes?

A// the reason is, abstract classes may contain non-final variables, whereas

variables in the interface are final, public and static.

How to declare an interface?

An interface is declared by using the interface keyword. It provides total

abstraction; means all the methods in an interface are declared with the empty

body, and all the fields are public, static and final by default. A class that

implements an interface must implement all the methods declared in the

interface.

Difference between Class and Interface

The major differences between a class and an interface are:

Class Interface

In class, you can instantiate variables

and create an object.

In an interface, you can’t instantiate

variables and create an object.

Class can contain concrete(with

implementation) methods

The interface cannot contain

concrete(with implementation)

methods

The access specifiers used with classes

are private, protected, and public.

In Interface only one specifier is used-

Public.

 // A simple interface

interface Player

{

 final int id = 10;

 int move(); //abstract method

}

Implementation: To implement an interface we use the keyword implements

Example:

 interface In1 {

 final int a = 10; // public, static and final

 void display(); // public and abstract

}

class TestClass implements In1 { // A class that implements the interface.

 public void display(){

 System.out.println("Test");

 }

 public static void main(String[] args)

 {

 TestClass t = new TestClass();

 t.display();

 System.out.println(a);

 }

}

Real-World Example: Let’s consider the example of vehicles like bicycle, car,

and bike………, they have common functionalities. So we make an interface and

put all these common functionalities. And lets Bicycle, Bike, car ….etc. implement

all these functionalities in their own class in their own way.

interface Vehicle {

 void changeGear(int a);

 void speedUp(int a); // all are the abstract methods.

 void applyBrakes(int a);

}

Output

Test

10

class Bicycle implements Vehicle{

 int speed;

 int gear;

 @Override

 public void changeGear(int newGear){ // to change gear

 gear = newGear;

 }

 @Override

 public void speedUp(int increment){

 speed = speed + increment;

 }

 @Override

 public void applyBrakes(int decrement){

 speed = speed - decrement;

 }

 public void printStates() {

 System.out.println("speed: " + speed

 + " gear: " + gear);

 }

}

class Bike implements Vehicle {

 int speed;

 int gear;

 @Override

 public void changeGear(int newGear){

 gear = newGear;

 }

 @Override

 public void speedUp(int increment){

 speed = speed + increment;

 }

 @Override

 public void applyBrakes(int decrement){

 speed = speed - decrement;

 }

 public void printStates() {

 System.out.println("speed: " + speed

 + " gear: " + gear);

 }

}

Class Test {

 public static void main (String[] args) {

 Bicycle bicycle = new Bicycle();

 bicycle.changeGear(2);

 bicycle.speedUp(3);

 bicycle.applyBrakes(1);

 System.out.println("Bicycle present state :");

 bicycle.printStates();

 Bike bike = new Bike();

 bike.changeGear(1);

 bike.speedUp(4);

 bike.applyBrakes(3);

 System.out.println("Bike present state :");

 bike.printStates();

 }

}

Advantages of Interfaces in Java

The advantages of using interfaces in Java are as follows:

- Without bothering about the implementation part, we can achieve the

security of the implementation.

- In Java, multiple inheritance is not allowed, however, you can use an

interface to make use of it as you can implement more than one interface.

 Output

Bicycle present state :

speed: 2 gear: 2

Bike present state :

speed: 1 gear: 1

New Features Added in Interfaces in JDK 8

1. Prior to JDK 8, the interface could not define the implementation. We can now

add default implementation for interface methods. This default

implementation has a special use and does not affect the intention behind

interfaces.
Suppose we need to add a new function in an existing interface. Obviously, the old

code will not work as the classes have not implemented those new functions. So

with the help of default implementation, we will give a default body for the newly

added functions. Then the old codes will still work.

interface In1

{

 final int a = 10;

 default void display()

 {

 System.out.println("hello");

 }

}

class TestClass implements In1// A class that implements the interface.

{

 // Driver Code

 public static void main (String[] args)

 {

 TestClass t = new TestClass();

 t.display();

 }

}

2. Another feature that was added in JDK 8 is that we can now define static

methods in interfaces that can be called independently without an object.

Note: these methods are not inherited.

interface In1

{

 final int a = 10;

Output

hello

 static void display()

 {

 System.out.println("hello");

 }

}

class TestClass implements In1// A class that implements the interface.

{

 public static void main (String[] args)

 {

 In1.display();

 }

}

Important Points about Interface or Summary of the Article:

- We can’t create an instance (interface can’t be instantiated) of the interface

but we can make the reference of it that refers to the Object of its

implementing class.

- A class can implement more than one interface.

- An interface can extend to another interface or interfaces (more than one

interface).

- A class that implements the interface must implement all the methods in the

interface.

- All the methods are public and abstract. And all the fields are public, static,

and final.

- It is used to achieve multiple inheritances.

New Features Added in Interfaces in JDK 9

From Java 9 onwards, interfaces can contain the following also:

- Static methods

- Private methods

- Private Static methods

Output

hello

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface

extends another interface, but a class implements an interface.

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple

interfaces, it is known as multiple inheritance.

interface Printable{

void print();

}

interface Showable{

void show();

}

class Test implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

Test obj = new Test ();

obj.print();

obj.show();

 }

}

interface Printable{

void print();

}

interface Showable{

void print();

}

class Test implements Printable, Showable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

Test obj = new Test ();

obj.print();

 }

}

Interface inheritance

A class implements an interface, but one interface extends another interface.

interface Printable{

void print();

}

interface Showable extends Printable{

void show();

}

class Test implements Showable{

public void print(){System.out.println("Hello");}

هنا نلاحظ حل لمشكلة الوراثة المتعدد

المتعلقة بوجود نفس الدالة في اكثر من

 .كلاس

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

Test obj = new Test ();

obj.print();

obj.show();

 }

}

